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OXYGEN DIFFUSION THROUGH
YTTERBIUM-OXIDE/YTTRIUM-BARIUM-CUPRATE BILAYERS

INTRODUCTION

Since the discovery of high critical temperature superconductors (HTSCs) [ 1], there has been
a search for appropriate materials on which to grow epitaxial films for device applications. The
ideal material is chemically compatible and has both a good structural and thermal expansion
match to the HTSC [2,3]. For microwave devices [2-7], the material should also have either a
relatively high or low dielectric constant and be low loss and isotropic with respect to microwave
radiation. High dielectric constants are needed for delay lines; while low dielectric constants are
needed for numerous other microwave devices.

Because of their relatively low dielectric constant and isotropic properties, C sesquioxides are
being investigated [8-10] for use as substrates and buffer/dielectric layers in HTSC microwave
devices. Ytterbium oxide (Yb,0O3) has a dielectric constant near 11 and loss tangent (tan §) =
10-2 at 10 kHz, 297 K [11]. Yb,O3 is cubic with a lattice constant of 10.4360 A and linear
thermal expansion coefficient [12] of 5-10 x 106 K-1. The Yb,03 lattice grows c-axis oriented
on c-axis oriented Yttrium-Barium-Cuprate YBa,Cu3075 (YBCO). For such growth, the in-
plane relationship is likely <100>Yb203| | YBCO<110> [8]. In such an arrangement, the Yb,03
lattice matches to a quadrupled a and b lattice parameter of YBCO within 3.4 and 5.2% where
the a and b lattice parameters of YBCO are in compression.

A concern in YBCO multilayer device processing is oxygen uptake in YBCO layers that lie
underneath dielectric layers. At the deposition conditions for growth of YBCO [13], the films
are oxygen deficient. Providing enough oxygen to thin single layer YBCO films in short
annealing cycles, typically 10 to 20 min, has not been difficult due both to the fast oxygen
diffusion rates along the a and b crystallographic axes (> 10-13 cm2s-1 above 300 °C) and the
defect nature of the material which provides short circuit diffusion paths along the slow diffusing
¢ axis direction (= 10-16 cm?s-1 at 400 °C) [14-17]. However, when a dielectric layer is
deposited over an oxygen deficient YBCO film, fully oxygenating the YBCO film during
reasonably short annealing cycles may prove impossible. Oxygen intake into the YBCO film is
impeded whenever the dielectric layer is a good quality, pinhole-free film that diffuses oxygen
more slowly than YBCO. Ultimately, oxygen diffusion rates through materials used in HTSC
multilayer structures must be determined in order to know the annealing time required to fully
oxygenate HTSC layers in the structure.




Here, we report the diffusion rate of oxygen through an epitaxial Yby03/YBCO bilayer
grown on an (001) oriented MgO single crystal substrate. The bilayer was prepared using the
pulsed laser deposition (PLD) technique [18,19]. An MgO 1 cm x 1 cm substrate was pasted
onto an inconel block with silver paint. The YBCO layer was deposited in 150 mTorr of oxygen
and at a block temperature of 850 °C (substrate surface temperature of 815 °C as measured using
a 2-14 um infrared pyrometer with emissivity €=0.86) by irradiating a YBCO target for 10 min at
a laser fluence of 1-2 J/cm? using a KrF excimer laser (A=248 nm) operating at 10 Hz. The
Yb,03 layer was deposited at 850 °C in 150 mTorr oxygen using a laser fluence of 1-2 J/cm?2 and
a repetition rate of 30 Hz for 15 min. The bilayer film was cooled in 0.5 atm of oxygen from a
block temperature of 650 to 450 °C in 15 min and to room temperature over the next 5 min.

The crystallinity and orientation of the bilayer were evaluated with x-ray diffraction 6-260
scans using copper Ko as the radiation source. The x-ray spectrum of the Yb,O 3/YBCO bilayer
on (001) MgO is shown in Fig. 1. The diffraction peaks indicate an oriented (00¢) Yb,O3 layer
on an oriented (00§ YBCO layer. Using an a.c. eddy current technique [20], the as-grown
bilayer was measured to have a critical transition temperature (T,) onset of 79 K and critical
transition temperature AT, of 10 K with two distinct transitions, 2 and 8 K wide, respectively.
The film thicknesses of the bilayer were measured to be 16,000/8000 A for Yb,03/YBCO using
scanning electron microscopy (SEM). Rutherford Backscattering Spectroscopy (RBS) revealed
film thicknesses of 7100/7100 x 1015 atoms/cm2, respectively. The films were determined to be
about 65/100% dense by comparing the RBS and SEM results. Theoretical crystal densities of
7.05/7.50 x 1022 atoms/cm3 were used to convert the RBS values to thickness.

The bilayer was cut into four smaller pieces. Using the annealing procedure described
elsewhere [21], each singular piece was annealed in a quartz tube for either 3, 5, 9 or 12 min at
655, 555, 465 and 365 °C, respectively, in 0.5 atm of oxygen consisting of equal parts of oxygen
with mass-18 (180) and oxygen with mass-16 (160). The tube was then quenched in a cold
water bath to less than 100 °C in about 2.5 min. The annealing and quenching technique assures
that the majority of diffusion occurs at the given annealing temperature. The bilayers were
analyzed for 180 and 160 concentrations as a function of depth using a Cameca IMS-3f
secondary ion mass spectrometer (SIMS). A cesium ion (Cst) primary ion beam with an impact
energy of 14.5 keV was used to sputter the sample. The beam was rastered over a 125 pm x 125
pm area; sputtered ions were collected from a circular region 35 pm in diameter to eliminate
crater and edge effects. Negative secondary ions were detected to maximize the oxygen signal.
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FIGURE 1. X-ray diffraction data, 6—-20 scans, from the Yb,03/YBCO bilayer
on (001) MgO substrate. The (00¢) diffraction peaks from the MgO substrate,
YBCO and Yb,O3 layers which are marked “+”,“x” and “i”, respectively,
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indicate c-axis orientation.

For a sample annealed in a gas mixture of oxygen containing equal parts of 180 and 160, the
concentration of diffused oxygen in the bilayer at depth x,Cp(x), can be expressed as:
2[(**0) - 0.00204(**0+"°0)] M

[(*0+"0)]
where (180) and (160) represent the number of SIMS counts of 180 and 160 isotopes at depth
x, respectively. The term 0.00204(180+160) represents the natural abundance level or

Cpx) =

background level of 180 initially in the sample. The above expression is only approximate since
there is initially oxygen with mass-17 (170) in the samples at the oxygen natural abundance level
of 0.037 atomic%. The factor of 2 is necessary to describe the total concentration of oxygen
diffused into the sample from an annealing atmosphere containing equal parts of 180 and 160.
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DISCUSSION

Here, it is our intent to evaluate bulk diffusion in the Yb,O3/YBCO bilayer. Raw SIMS data
are messaged using equation (1) to give the concentration of diffused oxygen, Fig. 2, as a
function of sputter time or depth in the bilayer. RBS results indicate thickness variations of
about 10%, and the SIMS sputter time of these samples did vary also, indicating thickness
variations. However, for the purposes of evaluating oxygen diffusion rates, all samples are
assumed to have identical thicknesses. For graphical convenience, the sputter time or depth into

the sample is normalized to the thickest sample.
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FIGURE 2. Converted SIMS data showing concentration of diffused oxygen as a
function of depth into the Yb,O3/YBCO bilayer on (001) MgO substrate.
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The diffusion behavior of oxygen in the Yb,O3 layer can be broken into two components, short
circuit and bulk diffusion. These two types of diffusion can be independently modeled. Short
circuit diffusion occurs due to pinholes, grain boundaries, particulate and other film
imperfections, and depends on extrinsic factors like film deposition method and deposition
parameters. Bulk diffusion is an intrinsic factor that is only dependent upon the material. It is
the bulk diffusion rate that is of concern in HTSC multilayer structures, especially when the film
has few imperfections.

In Fig. 2, oxygen diffusion in the YbyO3 layer is modeled using a semi-infinite plane sheet
solution [22] of the form:

C(xt) = Kp(Cyy — CB)J?[l - erfl:z \/%;D +Kp(Cyy - CB)«/;(I - erfl:Z \/—Dx—,,-—tD +C;

where C(x,t) is the concentration of diffused oxygen in the bilayer at depth x for annealing time

t, Kg and K are a measure of the surface sorption associated with the bulk and fast diffusion
component, Cy, is the maximum concentration of diffused oxygen, Cp is the concentration
(natural abundance level) of 180 initially in the sample, erf is the error function, and D g and
Dy are the diffusivity in the bulk material and fast diffusion component, respectively.

The above solution fits the experimental conditions which are far from equilibrium for the
dielectric layer. Note the dielectric layer is relatively thick compared to the depth to which bulk

diffusion occurs in the dielectric. Also note that the concentration of diffused oxygen at the
surface of the dielectric layer does not instantaneously rise to a final equilibrium value but rather
increases toward an equilibrium value as a function of time. The terms K(Cy, -Cp)(t0:5) are
used to model this behavior. The first and second terms in equation (2) arise due to bulk and
short circuit diffusion, respectively. The final term, Cp, is due to the initial natural abundance
level of 180 in the sample.

Using the experimental conditions of Cyp=1, Cp=0.00204 and the appropriate annealing time,
Table 1, the experimental data are simulated, Fig. 2, by adjusting the parameters Kg, Kp, D g
and Dg. Table 1 lists values for Kp, Kr, D g and D i which give the reasonably good fits to
the experimental data as shown in Fig. 2. Due to film surface roughness, SIMS depth resolution
is estimated to be about 200 A for this experiment. Film thickness variations are estimated to be
10% or 1600 A. The upper and lower limits of diffusivity, Table 1, are estimated (using only
the first term in equation (2)) by adjusting Dp while using the simulated values for Kp, Cyy,
Cp and ¢ until the 33% point of full surface concentration moves to 1800 A from its original
simulated position. The bulk diffusivity with estimated upper and lower limits, Table 1, are used
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in the Arrhenius plot, Fig. 3.
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FIGURE 3. Simulated as well as estimated upper and lower limits for oxygen
diffusivity in Yb,O3 are shown as symbols in the Arrehnius plot. The lines
represent least squares fit to the data.

Using an equation of the form:
D=D, exp(:g—) 3)
kT

where k is Boltzmann’s constant, Q is the activation energy and T is the diffusion temperature,
a least squares fit is obtained for each set of diffusivity values, and simulated as well as estimated
upper and lower diffusion limits. The values for Dy, Q and the correlation or fitting factor, R,
are reported in Table 2. The fit to the upper, lower and simulated diffusivity values yields the
lowest, highest and most probable activation energies of 0.50, 0.73 and 2.03 eV, respectively.
The lowest, highest and most probable values for D, are 3.42 x 109, 1.75 x 101 and 3.10 x 10-8
em? s-1, respectively. By comparing these diffusivity values with those for polycrystalline
YBCO [14] (which is the likely diffusion behavior of thin single crystal-like YBCO thin films),
Yb,03 will impede oxygen diffusion in underlying YBCO layers at temperatures greater than
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about 500 °C.

Table 1. Fitting Parameters and Diffusion Values For Yb,03.

O Time K (104 9DF2 | Dy (1014 cm2s°1)
(10?sec) [ Ky | Kp | (107 om™) Min. Sim. Max.
365 7.2 275 | 130 0.002 0.001 6 50
465 54 440 | 150 0.0015 02 16 65
555 30 880 | 180 3 100 360 650
655 15 1250 | 7.90 0.09 30 200 550

The short circuit diffusion component which extends all the way to the YBCO layer allows a
large uptake of 180 into the YBCO layer. Note that there is always a larger concentration of 180
in the YBCO film than in the fast diffusion component of the Yb,O3 layer. It can be argued that
film edge effects, that is, diffusion of oxygen along the plane of the YBCO film, cannot account
for the level of 180 observed in the YBCO layers. Using the sample dimensions, it would take
diffusivities on the order of 10-6 to 10-5 cm? s-! to account for the maximum 180 concentrations
seen in the sample annealed at 450 °C. Therefore, short circuit diffusion paths through the Yb,03
layer account for the large concentrations of 180 observed in the YBCO layers. Portions of the
YBCO film are in direct contact with the annealing atmosphere via pinholes through the
dielectric. Oxygen is sorbed at the YBCO surface, diffuses along the a and b crystallographic
axes and along defects in the ¢ axis direction.

Table 2. Diffusion Coefficients For Yb,O3.

D, 10 em* Y | Qv R
Min. 0.342 0.50 0.771
Simulated 3.10 0.73 0493
Max. 1.75x 107 2.03 0.008




SUMMARY

While the diffusion rate of oxygen in thin single layer YBCO films has been of little concern due
both to the rapid diffusion of oxygen along the a and b crystallographic axes and the defect
nature of the material which provides short circuit diffusion paths along the slow diffusing ¢ axis
direction, diffusion of oxygen through buffer and dielectric layers in HTSC multilayer structures
is of concern in multilayer device processing. It is important to determine the rate of oxygen
diffusion through each material used in the multilayer structure so that proper annealing cycles
can be used during device processing. We have investigated the rate of oxygen diffusion through
Yb,03. The diffusion rate of oxygen in this material is less than (5.0, 6.5, 65.0 and 55.0) x 1013
cm2 s-1 at 365, 465, 555 and 655 °C, respectively. For high quality pinhole free films of Yb,O3,
oxygen uptake into an underlying YBCO layer will be impeded for temperatures greater than
about 500 °C and ultimately longer annealing cycles will be required to fully oxygenate
underlying YBCO layers in multilayer structures.
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